Applications of Confluent Hypergeometric Function in Strong Superordination Theory
نویسندگان
چکیده
In the research presented in this paper, confluent hypergeometric function is embedded theory of strong differential superordinations. order to proceed with study, form adapted taking into consideration certain classes analytic functions depending on an extra parameter previously introduced related subordination and superordination. Operators defined using function, namely Kummer–Bernardi Kummer–Libera integral operators, are also those superordinations obtained for which they best subordinants. Similar results regarding derivatives operators. The examples at end study proof applicability original results.
منابع مشابه
The Kummer confluent hypergeometric function and some of its applications in the theory of azimuthally magnetized circular ferrite waveguides
Examples of the application of the confluent hypergeometric functions in miscellaneous areas of the theoretical physics are presented. It is suggested these functions to be utilized as a universal means for solution of a large number of problems, leading to: cylindrical, incomplete gamma, Coulomb wave, Airy, Kelvin, Bateman, Weber’s parabolic cylinder, logarithmic-integral and exponential integ...
متن کاملProperties of the Bivariate Confluent Hypergeometric Function Kind 1 Distribution
The bivariate confluent hypergeometric function kind 1 distribution is defined by the probability density function proportional to x1 1 x2 2 1 F1(α; β; −x1 − x2). In this article, we study several properties of this distribution and derive density functions of X1/X2, X1/(X1 + X2), X1 + X2 and 2 √ X1X2. The density function of 2 √ X1X2 is represented in terms of modified Bessel function of the s...
متن کاملMultivariate Generalization of the Confluent Hypergeometric Function Kind 1 Distribution
The confluent hypergeometric function kind 1 distribution with the probability density function pdf proportional to x −11F1 α; β;−x , x > 0 occurs as the distribution of the ratio of independent gamma and beta variables. In this article, a multivariate generalization of this distribution is defined and derived. Several pertinent properties of this multivariate distribution are discussed that sh...
متن کاملOn the confluent hypergeometric function coming from the Pareto distribution
Making use of the confluent hypergeometric function we can obtain the Laplace-Stieltje transform of the Pareto distribution in the following form ζ(s) = hU(1; 1− h; s) = 1F1(1; 1− h; s)− Γ(1− h)s1F1(1 + h; 1 + h; s). About this transform, we obtain an identity, Γ(1 + h)|U(1, 1− h, s)|2 = ∫ ∞ 0 ∫ ∞ 0 λhe−λ−y |λ+ s|2 + λy 2000 Mathematical Subject Classification: 33C15, 60E07
متن کاملA Connection Formula for the q-Confluent Hypergeometric Function
We show a connection formula for the q-confluent hypergeometric functions 2φ1(a, b; 0; q, x). Combining our connection formula with Zhang’s connection formula for 2φ0(a, b;−; q, x), we obtain the connection formula for the q-confluent hypergeometric equation in the matrix form. Also we obtain the connection formula of Kummer’s confluent hypergeometric functions by taking the limit q → 1− of our...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Axioms
سال: 2022
ISSN: ['2075-1680']
DOI: https://doi.org/10.3390/axioms11050209